Effects of Finite Sample Width on Transition and Flame Spread in Microgravity
نویسندگان
چکیده
In most microgravity studies of flame spread, the flame is assumed to be two-dimensional, and twodimensional models are used to aid data interpretation. However, since limited space is available in microgravity facilities, the flames are limited in size. It is important, therefore, to investigate the significance of three-dimensional effects. Three-dimensional and two-dimensional simulations of ignition and subsequent transition to flame spread were performed on a thermally thin cellulosic sample. Ignition occurred by applying a radiant heat flux in a strip across the center of the sample. The sample was bounded by an inert sample holder. Heat loss effects at the interface of the sample and the sample holder were tested by varying the thermal-physical properties of the sample holder. Simulations were also conducted with samples of different widths and with different ambient wind speeds (i.e., different levels of oxygen supply). The width of the sample affected both the duration of the flame transition period and the post-transition flame spread rate. Finite width effects were most significant when the ambient wind was relatively small (limited oxygen supply). In such environments, the velocity due to thermal expansion reduced the net inflow of oxygen enough to significantly affect flame behavior. For a given sample width, the influence of thermal expansion on the net incoming oxygen supply decreased as the ambient wind speed increased. Thus, both the transition and flame spread behavior of the three-dimensional flame (along the centerline) tended to that of the two-dimensional flame with increasing ambient wind speed. Heat losses to the sample holder were found to affect the flame spread rate in the case of the narrowest sample with the slowest ambient wind.
منابع مشابه
Flame Spread along Free Edges of Thermally Thin Samples in Microgravity
The effects of imposed flow velocity on flame spread along open edges of a thermally thin cellulosic sample in microgravity were studied experimentally and theoretically. In this study, the sample was ignited locally at the middle of the 4 cm wide sample, and subsequent flame spread reached both open edges of the sample along the direction of the flow. The following flame behaviors were observe...
متن کاملMicrogravity opposed-flow flame spread in polyvinyl chloride tubes
The effects of gravity on opposed-flow flame spread in a confined geometry were investigated experimentally in the 2.2-s drop tower at the NASA Glenn Research Center. Pure oxygen flowed through samples of 0.64-cminner-diameter polyvinyl chloride (PVC) tubing held either horizontally or vertically in a combustion chamber filled with nitrogen. The sample was ignited in normal gravity with a hot w...
متن کاملRadiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments
Microgravity experiments on flame spread over thermally-thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large spread rate (Sf) over thermally-thick fuels compared to dense fuels such as PMMA. This scheme enabled meaningful results to be obtained even in 2.2 second drop tower experiments. It was found that, in contrast conventional understandi...
متن کاملPrediction of Three-Dimensional Downward Flame Spread Characteristics over Poly(methyl methacrylate) Slabs in Different Pressure Environments
The present study is aimed at predicting downward flame spread characteristics over poly(methyl methacrylate) (PMMA) with different sample dimensions in different pressure environments. Three-dimensional (3-D) downward flame spread experiments on free PMMA slabs were conducted at five locations with different altitudes, which provide different pressures. Pressure effects on the flame spread rat...
متن کاملGravity effects on partially premixed flames: an experimental-numerical investigation
While premixed and nonpremixed microgravity flames have been extensively investigated, the corresponding literature regarding partially premixed flames (PPFs) is sparse. We report the first experimental investigation of burner-stabilized microgravity PPFs. Partially premixed flames with multiple reaction zones are established in microgravity on a Wolfhard–Parker slot burner in the 2.2 s drop to...
متن کامل